博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
hdu 2489 Minimal Ratio Tree
阅读量:5076 次
发布时间:2019-06-12

本文共 2576 字,大约阅读时间需要 8 分钟。

Problem Description
For a tree, which nodes and edges are all weighted, the ratio of it is calculated according to the following equation.
Given a complete graph of n nodes with all nodes and edges weighted, your task is to find a tree, which is a sub-graph of the original graph, with m nodes and whose ratio is the smallest among all the trees of m nodes in the graph.
 

 

Input
Input contains multiple test cases. The first line of each test case contains two integers n (2<=n<=15) and m (2<=m<=n), which stands for the number of nodes in the graph and the number of nodes in the minimal ratio tree. Two zeros end the input. The next line contains n numbers which stand for the weight of each node. The following n lines contain a diagonally symmetrical n×n connectivity matrix with each element shows the weight of the edge connecting one node with another. Of course, the diagonal will be all 0, since there is no edge connecting a node with itself.
All the weights of both nodes and edges (except for the ones on the diagonal of the matrix) are integers and in the range of [1, 100].
The figure below illustrates the first test case in sample input. Node 1 and Node 3 form the minimal ratio tree. 
 

 

Output
For each test case output one line contains a sequence of the m nodes which constructs the minimal ratio tree. Nodes should be arranged in ascending order. If there are several such sequences, pick the one which has the smallest node number; if there's a tie, look at the second smallest node number, etc. Please note that the nodes are numbered from 1 .
 

 

Sample Input
3 2
30 20 10
0 6 2
6 0 3
2 3 0
2 2
1 1
0 2
2 0
0 0
 
Sample Output
1 3
1 2
 

 

Source
 
 
1 #include 
2 #include
3 #include
4 #define inf 0x3f3f3f3f 5 using namespace std; 6 int n,m; 7 int num[20]; 8 int map[20][20]; 9 int ans[20][20]; 10 int dis[20]; 11 bool mark[20]; 12 int DJ(int pm) 13 { 14 memset(dis,inf,sizeof(dis)); 15 memset(mark,false,sizeof(mark)); 16 for(int i=1;i
ans[temp][j]) 39 { 40 dis[j]=ans[temp][j]; 41 } 42 } 43 } 44 return res; 45 } 46 int main() 47 { 48 while(~scanf("%d%d",&n,&m)) 49 { 50 if(n==0 && m==0) 51 { 52 break; 53 } 54 for(int i=0;i
=(1<
View Code
 
数据量的允许,使用二进制压缩的方法,枚举各种可能,每次都求一次最小生成树;
注意的地方是double 判<0( 小于0)使用高精度判断 例如判小于可以(a<b):a-b<-(1e-8)
否则会出现WA的情况

转载于:https://www.cnblogs.com/ouyangduoduo/p/3320230.html

你可能感兴趣的文章
poj-1163 动态规划
查看>>
Golang之interface(多态,类型断言)
查看>>
Redis快速入门
查看>>
BootStrap---2.表格和按钮
查看>>
Linear Algebra lecture 2 note
查看>>
CRC计算模型
查看>>
Ajax之404,200等查询
查看>>
Aizu - 1378 Secret of Chocolate Poles (DP)
查看>>
csv HTTP简单表服务器
查看>>
OO设计的接口分隔原则
查看>>
数据库连接字符串大全 (转载)
查看>>
java类加载和对象初始化
查看>>
对于负载均衡的理解
查看>>
django简介
查看>>
window.event在IE和Firefox的异同
查看>>
常见的js算法面试题收集,es6实现
查看>>
IO流写出到本地 D盘demoIO.txt 文本中
查看>>
Windows10 下Apache服务器搭建
查看>>
HDU 5458 Stability
查看>>
左手坐标系和右手坐标系
查看>>